
NASA Contractor Report 194975

ICASE Report No. 94-80

/_ --_X,/

IC S
SCALABILITY STUDY OF PARALLEL SPATIAL

DIRECT NUMERICAL SIMULATION CODE ON

IBM SP1 PARALLEL SUPERCOMPUTER

Ulf R. Hanebutte

Ronald D. Joslin

Mohammad Zubair

Contract NAS 1-19480

August 1994

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

,,t
cO

cO _

_JW
..I ..J t_o

_ <[-J <

Jt_ 09

OZr0
O C

tt_ _ W t_

0"0_ e-

l -J<_
< .J .J c_

Scalability Study of Parallel Spatial Direct Numerical Simulation Code on IBM

SP1 Parallel Supercomputer

Ulf R. Hanebutte 1

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681, USA

Ronald D. Joslin

NASA Langley Research Center

Hampton, VA 23681, USA

Mohammad Zubair 1

International Business Machines Corporation

Thomas J. Watson Research Center

Yorktown Heights, NY 10598, USA

Abstract

The implementation and the performance of a parallel spatial direct numerical simulation (PSDNS) code are

reported for the IBM SP1 parallel supercomputer. The spatially evolving disturbances that are associated

with laminar-to-turbulent transition in three-dimensional boundary-layer flows are computed with the PS-

DNS code. By remapping the distributed data structure during the course of the calculation, optimized serial

library routines can be utilized that substantially increase the computational performance. Although the

remapping incurs a high communication penalty, the parallel efficiency of the code remains above 40 percent

for all performed calculations. By using appropriate compile options and optimized library routines, the

serial code achieves 52-56 Mflops on a single node of the SP1 (45 percent of theoretical peak performance).

The actual performance of the PSDNS code on the SP1 is evaluated with a "real world" simulation that

consists of 1.7 million grid points. One time step of this simulation is calculated on eight nodes of the SP1

in the same time as required by a Cray Y/MP supercomputer. The 32-node SP1 is 2.9 times faster than the

Cray Y/MP for the same simulation. The scalability information provides estimated computational costs

that match the actual costs relative to changes in the number of grid points.

z

1This research was supported by the National Aeronautics and Space Administration under NASA Contract No.

NAS1-19480 while the authors were in residence at the Institute for Computer Applications in Science and Engineering
(ICASE), NASA Langley Research Center, Hampton, VA 23681.

" • _ _ _i_ i__I_ i_I_ , _ _

1 Introduction

In a recent review article, Fischer and Patera [4] summarize current work in the area of parallel

simulation of viscous incompressible flows. In their work, they discuss parallel solution strategies for

Poisson, Stokes, and Navier-Stokes problems. Iterative and direct-solution techniques that utilize

domain decomposition for structured and unstructured finite-element grids are presented. The

coupled approach (based on a full-implicit temporal treatment) and the decoupled approach with

a semi-implicit time step are compared for the Navier-Stokes equations. Examples of Solutions to

turbulent flow problems with either transpose-based fast Fourier transform (FFT) techniques or

distributed FFT algorithms are given. These Fourier examples include the first parallel computation

of a viscous incompressible flow by Moin and Kim [12] in 1982 on a 64-processors ILLIAC IV.

However, a discussion of parallel three-dimensional (3D) spatial direct numerical simulation (DNS)

algorithms for laminar-to-turbulent transition (the subject of this paper) is not included in reference
[4].

This report can be considered as a follow-up to the work by Joslin and Zubalr [9], in which

the performance of the parallel spatial direct numerical simulation (PSDNS) code on the the rela-

tively small and slow INTEL iPSC/860 computer was analyzed. The limited local memory of the

iPSC/860 seriously restricted the analysis. Because the IBM SP1 is a newer generation of parallel

computer with an increased local memory capacity and improved computation and communication

performance, comparison of these two machines is useless. However, the general statements given
in reference [9] in regard to the scaling of major kernels of the PSDNS code are valid.

2 Performance

2.1 The Parallel Computing Environment

The IBM SP1 [5] scalable parallel computer utilized in the presented performance study consists

of 128 processing nodes. Each node is essentially an IBM RS/6000 model 370 workstation with

a clock rate of 62.5 MHz. The local memory is 128 Mb, and the processor data and instruction

cache is 32 kb each. The individual nodes are connected by a multistage network that consists

of high-performance switches (50#sec latency, 8.5 Mb bandwidth); each switch can support up to

16 nodes. The peak performance obtained by performing one multiplication and one addition on

64-bit floating point numbers per clock cycle is 125 Mflops for each processing node. However, in

practice, a FORTRAN code delivers 15-75Mflops. Although the next-generation parallel computer

from IBM, called the SP2 [8, 13], is identical to the SP1 architecture, its node performance has
more than doubled and the communication network bandwidth has increased fourfold. For the

SP2, the increase in communication bandwidth relative to the computing performance will provide

a better balanced system, which should further improve the performance results of the presented

code. The access to Argonne's SP1 is controlled by a scheduler, which ensures that the requested

node partition is operated in a dedicated mode. Thus, only the user application and some necessary
Unix demons are executed on the assigned processor partition.

2.2 The Parallel Application

The PSDNS code developed by Joslin and Zubair [9] has been ported to the SP1 with only minor

changes. The original parallel code is based on the message-passing paradigm with explicit data

distribution,whichenablesgoodportability among a broad class of parallel computers. The inter-

ested reader is referred to references [9] and [10] for algorithmic details of the spatial DNS code. In

the PSDNS code, the data are distributed among the np processors in block form with a z-mapping.

That is, the 3D data are partitioned into np blocks that contain nz/np two-dimensional (2D) planes

of nxny data items each (Figure 1). To perform local FFT's in the spanwise direction nz, the data

must be remapped. As indicated in Figure 2, an x-mapping allows the utilization of optimized

serial FFT library routines [7] in the z direction. The INTEL implementation of the PSDNS code

relies on the xor algorithm [2] for the global data exchange; the IBM implementation makes use

of a global index routine provided by the AIX-parallel environment [6]. As shown in the study by

Joslin and Zubair, a significant performance gain can be achieved by utilizing a machine-specific

basic linear algebra subprogram (BLAS) level 3 routine [3] for the matrix by matrix multiplication.

Because this routine is also available on the IBM as part of the ESSL library [7], the advantage can
also be taken in the present implementation. The performance of the application code is further

improved through appropriate selection of the compile options. As a result, the run time of the

serial code can be reduced by a factor of 2.3 compared with a compilation without any options.

For a small test problem (for which Joslin and Zubair [9] obtained 189 Mflops on the Cray Y/MP

and 5 Mflops on a single node of the iPSC/860), a single node of the SP1 delivers 52.5 Mflops for
the d0uble-precision (i.e., 64-bit) computation.

2.3 Performance Study

To document the performance of the simulation code for a wide range of problem sizes and number

of processing nodes, three test suites are considered here. Further, a scaling analysis is presented in

which each of the three problem dimensions are scaled individually and the number of processors

is kept constant. The performance study is concluded with a discussion of a real-world large-scale

simulation. Although thousands of time steps are required for a single simulation performance

figures for only one time step of the PSDNS code are presented here. Performance figures for

one time step are sufficient because the workload for each time step is constant throughout the
simulation:

For all three test suites, performance data are collected for the serial code on a single node of

the SP1 and for the parallel code on up to 64 processing nodes. The chosen problem dimensions are

representative of actual simulations that are currently performed on Cray-class supercomputers.

The wall-normal dimension is fixed at 4'1 grid points for all three test suites. The number of grid

points in the streamwise direction determines whether the cases are considered to be small, medium,

or large. For small problems, the streamwise direction consists of 64 grid points; the medium and

large suites have 128 and 256 grid points, respectively. For each test suite, the spanwise dimension

is varied from 8 to 128 Fourier modes in powers of 2. Thus, experimental performance data can be

obtained for problems that range from as small as 64 streamwise, 41 wall-normal, and 8 spanwise

grid points (20 992 grid points) to a problem that is 64 times larger and contains 256 streamwise,
41 wall-normal, and 128 spanwise grid points.

The PSDNS code is instrumented with a set of timers to record separate performance data

for different parts of the computation (the total and four dominating algorithmic kernels) and the

communication. These measurements are wall-clock time. By including the idle time that results

from the necessary synchronization points of the code in the time data, processor-independent

performance figures can be obtained. Processor idle time is discussed below in conjunction with the

2

largesimulationfor whichthe smallserialfractionofthePSDNScodeisexperimentallydetermined.
In Figures 3(a), 4(a), and 5(a), the computational times for a single time step of the small,

medium, and large test suites, respectively, are given in double logarithmic graphs. The associated

communication times are given in Figures 3(b), 4(b), and 5(b). The excellent scaling of the code

on the SP1 can be observed immediately. However, large communication costs relative to the

computation costs are incurred because of the unbalanced architecture of the current SP1 (ie.,

network performance lags behind compute performance of processing nodes) on the one hand and

the algorithmic communication penalty on the other hand. The communication penalty must be

incurred in order to utilize highly optimized serial FFT routines in the spanwise direction. The

good scaling of the communication cost with respect to the number of processors is noteworthy

because the communication that occurs in the PSDNS code involves a complete exchange, which
represents a stringent test to the communication network.

The speedup of a parallel code for fixed-size problems is an important performance metric. In

Figures 6(a), 7(a), and 8(a), the actual speedup of the complete calculation for each case is given.

The performance of the algorithm can be improved by scaling the problem size by either increasing

the number of spanwise grid points or increasing the number of streamwise grid points. However,

the code is less sensitive to changes in the size of the streamwise dimension than it is to changes
in the number of spanwise grid points. For all test cases, the parallel efficiency of the PSDNS code

stays above 40 percent, even when 64 processing nodes are utilized.

A theoretical speedup metric can be obtained by ignoring all communication costs. These

metrics are given in Figures 6(b), 7(b), and 8(b). For large problems with 64 and 128 spanwise

grid points, a superlinear speedup is observed. The superlinear theoretical speedup seen for the

large problems is not a surprise. The good scalability of the algorithm, combined with the better

memory access of the local portion of the distributed data structure is an obvious explanation. For

a discussion of superlinear speedup, the reader is referred to reference [14].

To further examine the performance of the simulation algorithm, a cost breakdown and an

itemized speedup are given for each of the three test cases with 64 spanwise grid points in Fig-
ures 9, 10, and 11. The four dominating kernels of the algorithm, for which the operation count

and a normalized count are given in Table 1, are the matrix-matrix multiply (an ny, ny matrix is

multiplied by an ny, n_ matrix), the one-dimensional FFT in the spanwise direction, a tridiagonal

solver, and a pentadiagonal solver. The cost of each kernel relative to the computational cost shows

that both the FFT and the matrix-matrix multiply each require roughly 30 percent of the total

computing time. When the number of processors is small, the cost for the FFT routine is higher

than for the matrix-matrix multiply. The tridiagonal and pentadiagonal systems remain nearly

constant at about 10 and 5 percent, respectively. The cost for communication is relatively high,

and for a large number of processors the communication costs are equivalent to 80-90 percent of

the computational cost. The slight drop in the communicational costs from 32 to 64 processors

for the medium and large test cases can be attributed to the fact that idle time is included in the
overall computational cost.

The itemized speedup curves presented in Figures 9(b), 10(b), and ll(b)show the following: a

superlinear speedup for the FFT kernel; an ideal linear speedup for the tridiagonal solver; a nearly

ideal speedup for the matrix-matrix multiply; and a moderate speedup for the pentadiagonal solver.
The overall speedup of the computational fraction of the algorithm is close to that of the matrix-

matrix multiply (the kernel that dominates the algorithm). In addition, notice the speedup in

communication results with 64 processors in comparison with the 2-processor results.

2.4 Complete Data Exchange

The performance of the complete data exchange portion of the algorithm deserves a closer anal-

ysis. The startup latency and bandwidth are the two most important quantities for evaluating a

communication network. However, to analyze an application code, obtaining only an experimen-

tal bandwidth that includes the startup costs is sufficient. Before a meaningful discussion of the

bandwidth achieved per processor can be given, both the actual message volume and the message

size must be determined. The regular and throughout the simulation fixed communication pattern

results in deterministic values for these quantities. The data-exchange routine is called 51 times

during one time step of the algorithm. Thus, the message volume during one time step of the

double-precision code (i.e., 8 b per data item) is given by 51 × 8 x nxny(np - 1)_n_. For the small

test suite, the message volume is given in Figure 12(a) for 32, 64, and 128 spanwise grid points

and up to 32 processing nodes. The message volume quickly approaches its asymptotic value of

51 × 8 × nxnynz. The message size of each individual message drops rapidly with the number

of processors, as can be seen in Figure 12(b). The formula for determining the message size is

8 × nxnynz/n 2. To obtain the experimental bandwidth, the message volume must be divided by

one-half of the required wall-clock time. The factor of one-half is used because the data must be sent

as well as received. The experimental bandwidth achieved per processor is shown in Figure 13 as a

function of the message size, which is given on a logarithmic scale. For large messages, the experi-

mental bandwidth is close to the maximum value of the network bandwidth (8.5 Mb/sec). However,

the startup latency reduces the observed bandwidth for smaller message sizes. The startup latency

prevents the communication from being ideally scalable with the number of processors. A fixed-size

problem distributed among a larger set of processors necessitates the exchange of more messages

of shorter message size. Hence, network contention does not slow down the data exchange.

2.5 Scaling Analysis of the PSDNS Code

The scalability study is summarized in Figures 14, 15, and 16. The test case with 64 streamwise, 41

wall-normal, and 32 spanwise grid points is used as the pivot point for this study, which is carried

out on 16 processors. Figure 14(a) depicts the computational costs for varying the streamwise
dimension. The slowdown that occurs when the number of grid points in the streamwise direction

is doubled or quadrupled is given 'in Figure 14(b). The FFT, the matrix-matrix multiply, and

the communication cost are slightly superlinear; the overall computation time doubles for 128 grid
points and quadruples for 256 points.

A variation in the wall-normal dimension of the problem from 41 to 61 and, finally, to 81

grid points has a greater effect on the costs associated with the simulation. Figure 15(a) gives

the computational costs for the individual kernels, and Figure 15(b) plots the slowdown. The

normalized count for the matrix-matrix multiply is O(n_) (Table 1), which can readily be seen in
the slowdown curve for this major kernel. If nu is doubled, an execution time that is four times

larger results for the matrix-matrix multiply. The pentadiagonal Solver also shows a slowdown that

is more than linear; the FFT, the tridiagonal solver, and the communication costs scale linearly. The

scaling of the overall computational cost follows the dominating kernel (matrix-matrix multiply);
thus, it exhibits a slowdown of 2.8 when the wall-normal dimension is doubled.

Figure 16(a) shows the costs are effected when the number of spanwise grid points is increased.

A nearly linear scaling of the overall execution time (computation plus communication time) is

observed for the range of spanwise dimensions (32 to 128 grid points). A closer look at the individual

4

slowdowngivenin Figure 16(b)confirmsthe normalizedcountof O(log2nz) (Table 1) for the FFT

kernel. Although all other kernels scale linearly, the FFT kernel causes the computational cost to
follow the logarithmic increase of the FFT. We can expect that the overall time will increase at a

rate that is greater than linear as the number of spanwise grid points is increased.

2.6 Memory Requirement of the PSDNS Code

The memory requirement of the PDSNS code seriously limited the previous implementation on the

INTEL Hypercube [9]; however, the SP1, with 128 Mb of core memory on each node, allows the

larger simulations to be carried out. The largest grid that can be calculated on a single node of

the SP1 contains 671 744 grid points (128 streamwise, 41 wall-normal, and 128 spanwise points).

The executable code for this calculation requires 110 Mb of core memory. A rough estimate for the

memory requirement for the serial code then can be given as 170 b per grid point. However, because

the memory requirement is a function of both the problem size and the number of processors, no

simple relationship between executable code size and problem size can be given. In Figure 17, the

memory sizes of the executable code for the large test suite are presented. Due to limited space,
only the curves for 8 and 128 spanwise grid points are labeled. The reduction in the executable code

size caused by the distributed data structure is clearly visible. The total memory requirement (i.e.,

the size of the parallel executable code times the number of processors) is larger than the memory

needed by the serial code (due to the additional overhead that results from the data remapping
routine).

2.7 A Large-Scale Simulation

The nonlinear evolution of a crossflow vortex packet on a swept wing has been computed with

the spatial DNS code described by Joslin and Street [11]. Because this study required substantial

computational resources (i.e., approximately 125 CPU hours on a Cray-2 with a single processor),

it is representative of a large-scale simulation. For the SP1 compatible simulation, a grid with 896

streamwise, 61 wall-normal, and 32 spanwise grid points was Used. Thus, the computational grid

contains over 1.7 million grid points. The Cray Y/MP performs one time step of this simulation

in 54 seconds and delivers 240 Mflops. Therefore, the computational expense of one time step is
12 960 Mflop.

The large core memory of the SP1 allows a problem of the same size to be computed on as

few as eight processing nodes. The computational costs of the PSDNS algorithm for 8, 16, and 32

nodes of the SP1 are presented in Figure 18. The dashed line gives the total time required by the

algorithm to perform one time step. If we compare these SP1 timings with the times required by

a single node of the Cray Y/MP and Cray C-90 (marked with solid squares in the same plot) we
see that the PSDNS code is highly competitive with these serial supercomputer performances for

as few as 8 and 32 processing nodes of the SP1, respectively.

The actual measured execution time, which includes communication and idle time, is given

in Table 2 for 8, 16, and 32 nodes of the SP1. An idealized execution time can be obtained by

subtracting those times that each processing node spends idle or in communication. Because the

serial part of the algorithm is performed only on the first node, two idealized times must be recorded;

one value for the first node and another for the remaining processing nodes. The performance of

the PSDNS code (in Mflops), based on the actual time and the idealized time, is given in Table 2.

The idealized performance of 55 Mflops per processor is noteworthy. Recall that even though the

peakperformanceof a singlenodeis 128Mflops,15-75Mflopsaregenerallyobservedfor actual
applications.Thelast columnof Table2 showsthe memoryrequirementsof the executablecode;
thesenumbersshowthat the codeis far from reachingthelocalmemorylimit of 128Mb.

A performancesummaryfor thecommunicationpart of the algorithmis givenin Table3. The
presentedvaluesfor the messagevolumeand the messagesizeare calculatedwith the formula
presentedin section2.4. Themeasuredexperimentalbandwidthagreeswellwith thevaluesshown
in Figure13for the largetest case.

By usingtheidealizedexecutiontimesfor node1andfor nodes2-np in Table2 (the idealized
executiontime excludesall idle time andcommunicationcosts),onecandetermineexperimentally
the serialandparallelfractionsof the PSDNSalgorithm.Thedifferencebetweenthe twoexecution
timesis the time spentin the serialpart of the parallelalgorithm. If wemultiply the execution
time of node2 by the numberof processors,weobtainthe executiontime of the parallelportion.
In this context,total executiontime is equalto the time spentby all processingnodescombined.
If wenormalizethe time spentin the serialand parallelportionsof the algorithmwith the total
executiontimeweobtaintheserialfractions and the parallel fraction p, respectively. Surprisingly,
the serial fraction is only 1.4 percent, and the parallel fraction is 98.6 percent of the total. Amdahl's

law [1] provides a theoretical speedup that is derived from these two quantities:

1

s÷2-
_p

For 8, 16, and 32 processing nodes, the theoretical speedup Sp of the PSDNS code is 7.29, 13.22,
and 22.32, respectively. In the limit of np --* oo, the speedup asymptotically reaches the value

1/s. Even though the parallel granularity of the PSDNS code is restricted for this problem to 32
processing nodes, the theoretical maximum speedup is 71.

3 Conclusions

The expectations raised in reference [9] for the performance of the PSDNS code on a larger and

more powerful distributed memory machine may be realized with its implementation on the SP1.

In reference [9], due to hardware limitations, only a vague estimate for the performance of a large-

scale simulation on a 32-node INTEL iPSC/860 with sufficient core memory was given. Joslin and

Zubair concluded that the execution time for the PSDNS code on the 32-node iPSC/860 would be

twice the time required by a Cray supercomputer. In this work, we have shown that only eight

nodes of the more powerful SP1 are needed to perform such a large-scale simulation in the same

amount of time as required by a Cray Y/MP. Furthermore, the utilization of 32 processing nodes on

the SP1 reduces the execution time to roughly one-third. Both the parallel efficiency of the PSDNS

code (above 40 percent for all performed calculations) on the SP1 and the high serial performance

of 52-56 Mflops on a single SP1 node (45 percent of theoretical peak performance) contribute to

this success. On 32 processing nodes of the SP1, the PSDNS code is also highly competitive in
comparison with the advanced Cray C-90 on large-scale simulations.

The scalability of the computation and communication parts of the PSDNS code have been

documented for three test suites. A performance gain can be realized with a more balanced ar-

chitecture, in which the network bandwidth is increased relative to the processing performance

of the nodes. The next generation of IBM's parallel computer, the SP2, which has been recently

6

i:i

introduced,has a greater balance between communication and computational performance. Thus,

a higher parallel efficiency can be expected for the PSDNS code on the SP2, in addition to the
higher serial performance.

The scalability information obtained by independently varying the number of grid points in

each of the three problem dimensions confirms the theoretical scaling analysis and is in agreement

with the results obtained on the iPSC/860 [9]. The actual time required for the large simulation

on 16 processors can be predicted correctly. In Figure 14(a), the total time for a problem of size

nx = 64, ny -- 41, nz = 32 is 1.3 sec. The scaling coefficients for nx can be determined from

Figure 14(b) to be 14.3. For scaling the wail-normal dimension, Figure 15(b) gives a factor of

1.6. Therefore, the estimated time for the large simulation is 14.3 x 1.6 x 1.3 sec = 29.74 sec,

which is close to the value recorded in Table 2. Estimates for both 8 and 32 processors can also

be obtained with the speedup information provided in Figure 8(a) for the large test suite. The

obtained execution times are 56 and 17 sec, respectively, which again are reasonably close to the
actual measured time.

Acknowledgments

The authors gratefully acknowledge use of the Argonne National Laboratory High-Performance

Computing Research Facility (HPCRF). The HPCRFis funded principally by the U.S. Department
of Energy Office of Scientific Computing.

/ 7

References

[1] AMDAHL, G. (1967). Validity of the single-processor approach to achieving large scale com-
puting capabilities. Proceedings of the AFIPS Conference, 483-485.

[2] BOKHARI, S.H. (1991). Complet e Exchange on the iPSC/860. ICASE Report No. 91-4.

[3] DONGARRA, J.J., DuCRoz, J., HAMMARLING, S., AND DUFF, I. (1990). A set of level 3

basic linear algebra subprograms. ACM Transactions on Mathematical Software, 16(1), 18-28.

[4] FISCHER, P.F., AND PATERA, A.T. (1994). Parallel simulation of viscous incompressible
flows. Annu. Rev. Fluid. Mech., 26, 483-527.

[5] GROPP, W., LUSK, E., AND PIEPER, S.C. (1994). Users Guide for the Argonne National

Laboratory IBM SP1. Argonne National Laboratory.

[6] IBM PARALLEL PROGRAMMING REFERENCE, AIX Parallel Environment, Release 1.0. SH26-
7228-00, (1993).

[7] IBM GUIDE AND REFERENCE, Engineering and Scientific Subroutine Library, Version 2.
SH23-0526-00, (1992).

[8] IBM PRESS RELEASE, Cornell Theory Center First To Receive IBM's Newest High Perfor-

mance Power Parallel System. Obtained via World Wide Web, April 5, 1994.

[9] JOSLIN, R.D., AND ZUBAIR, M. (1993). Parallel Spatial Direct Numerical Simulations on the

Intel iPSC/860 Hypercube. ICASE Report No. 93-53.

[10] JOSLIN, R.D., STREET, C., AND CHANG, C.-L. (1993). Spatial DNS of Boundary-Layer

Transition Mechanisms: Validation of PSE Theory. Theor. and Comp. Fluid Dyn. 4(6), 271-
288.

[11]

[12]

JOSLIN, R.D., AND STREET, C. (1994). The Role of Stationary Crossflow Vortices in

Boundary-Layer Transition on Swept Wings. Accepted for publication in Phys. Fluids A.

MOIN, P., AND KIM, J. (1982). Numerical investigation of turbulent channel flow. J. Fluid
Mech. 118, 341-377.

[13] SAINI, S. (1994). The IBM SP2: Hardware, Software, Porting and Optimization Overiew. Nu-

merical Aerodynamics Simulation Program, NASA Ames Research Center, NAS User Seminar,
July 27, 1994.

[14] SUN, X.-H., AND ZItU, J. (1994). Shared Virtual Memory and Generalized Speedup. ICASE

Report No. 94-2. Also to appear in the Proceedings of the International Parallel Processing
Symposium, 1994.

8

i!i

Table 1: Operation Counts for Major Kernels

Kernel

MAT-MAT

FFT

TRIDIAG

PENTADIAG

Operation count (OC)

O(nxnynz log2nz)

O(nxnynz)

Normalization count

= OC/nxnynz

O(log2n)
o(1)
o(1)

Table 2: Performance of large simulation on 8, 16, and 32 Nodes of SP1

Number of

pro cessors

np

8

16

32

Time, sec
Actual Idealized

53.75

29.75

18.75

node

1 2-np
32.4 29.1

17.7 14.5

10.2 7.1

Per proc. Total
30 241

27 436

22 691

Performance, Mflops

Actual [Idealized
Per pro c. Total

55 440

55 880

56 1760

Executable

code,
Mb

79

60

50

i :

Table 3: Total Data Exchange for Single Iteration Step of Large Simulation

Number of

processors

np
8

16

32

Comm.,
sec

19.0

11.0

7.5

Message

Volume, Size,
Mb Mb

595 0.208

638 .052

659 .013

Bandwidth

Total, Per Processor,

Mb/sec Mb/sec
63 7.9

116 7.3

176 5.5

' 'L

_J ii I!..-- :i

,,,i i! ,,

!tfl'J lJ

!111 Jl

i! y

ii

ii

"_ * Wall normal

I

.[_$pam__se

Streamwise

"'- --,. il ii

Ill!
liil

!il

I

nx

(a) Entire domain. (b) Mapped onto four processors.

Figure 1: Computational domain.

1
?$ x

I

iil o
i z

! !

f!

! !
i 1

! !
! !
I l
! !
! !
! !
I J

! !
! !
! I

P1

! !
I I
! I
I I

I I

I!
II /

//

_Y
I I

i i P3

i ,
I I

i!
i!

i i

Figure 2: Global remapping results in local FFT's in spanwise direction.

10
t"

!
i

10 2

10_

i
(_ 10 0

nx: 64; ny: 41; nz: variable

;..6..'....:,...'..i..i.iiii i i i ii

.......... !......_----_---_--:-_--i--i-!...........i......!---.i---i--
t i i I I illi i I I I

10 0 101

Number of Processors

(a) Computational costs.

10 2
nx: 64; ny: 41; nz: variable

0
II)
(/)

E 101
0

--i-.
0

0
._
r-

3

E
E
o 10 o

::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::

.......... , :-----:---_--_--:--:--:--: -!----i.--!---!

: : : : : ::: : : :

................. _---_---i--i--i--_.H.................. :----'---:--

:::

=====================
10 ° 101

Number of Processors

(b) Communication costs.

Figure 3: Computational and communication costs for small test suite.

nx: 128; ny: 41; nz: variable

'::!!!!!i!!!!_i!!!i!!!i?!:.!!i!!i!;i!!!!!!!!!!!i!!!!!!i!!!!i!!!i!!_

!!!!i!!i!i!i!!!!!!!!!!!i!!!!!!i!!!!!!!!i!i:

101 _.32.i i....:., i..i..!..:.ii., i i i i i

i
(J 1 0 ° !!

..........!......ii"!!hii"i......!-"??-

.......... !...... _ " _ --! ! '!-!H !...... !----?---!---.
I I I iliiii I I I I i

00 101

Number of Processors

(a) Computational costs.

102

L)

(/)

E 101
0

0
0

C

E
E
o 10 o

nx: 128; ny: 41; nz: variable

!!!!!!!!i!!!!!!i!!!i!!i!!!!!!!i!!i!!!!!!!!!!!!!!!!!!!!!!i!!!!!i-2=---'......i---i---i--i--i--!-i-i...........!......i----i---!--!

.......... (...... :-- ---',-- H-- }. -:- -:- -:- -.' .:...... "-- --:----:

.......... ! ? " ! " ! ! '!!!".' !...... !?9-.
I I I I i IIII I I I I I

10 0 101

Number of Processors

(b) Communication costs.

Figure 4: Computational and communication costs for medium test suite.

11

nx: 256; ny: 41; nz: variable
102

_.-".-"i!::_i_!!i!!i!!i!!i::i::i!!!!!Z::Z!!:_::::::_::::_:::_:::_=.6_!_"-:::::i::: -::--!-i--ii-i........ !!!!!!!i!!!!i!!!i!!i

=.3._---,......_'IiZLI!!i!i_!IIZZ]ZZI]iZI]
16 _ ! _il;_ii i i i!!

{ 101

!_!!_!!i::!!!!i!:!!i!i;_!!i::i!i":::_!!!:!!:!i::!!!!!_!!i!!!i!!!
3

_ lOO==
-_!::!::!!!!!i!!!!!!i!!!i!!!i::!!!!!!i!!i!!!!!!!!::!!!!!!!!i!!!!i!!!!:
.......... !...... "i!"!iH'! [......!ii
.......... ! !9 f!"!!!! i......!-!!.

i i I I I lill i I i i i
100 101

Number of Processors

(a) Computational costs.

10 2
nx: 256; ny: 41; nz: variable

0
G)

101
0

°_

0
t3

¢-.

:3

E
E
o 10o

-6_---!......i---i--_-,-i-T--;......i......iT;_

:::
.......... !......;-----i---!--!-<--i--i-!...........;- _ i--i.-!
.......... !...... hi!!!!H !...... i-!!.

I i i i I IIII J i i I i

0 0 101

Number of Processors

(b) Communication costs.

Figure 5: Computational and communication costs for large test suite.

+ 40
n

E
o 30

_ 2o

®
®

nx: 64; ny: 41; nz: variable

60 ;..................... _.......... _....... _...

o_so....................i....................i........¢_......._....
i/

........................ ide_i_ i..............

=:// i

.........i.........._;4__
i i/ i i _ i................._....L.._
i / i : i i i

20 40 60

Number of Processors

(a) Complete calculation.

f-%

-_ 50
E

O

6. 40
E

-_ 30

_ 2o

10

nx:64; ny: 41; nz: variable

i i i/
60 i....................._......._

.......................................

......... i.......... i.......... i......... _ i 64 1

i i i_-i i !

........ i...... _ -......... i.......... ._......... -....

== i6 i i i i

20 40 60

Number of Processors

(b) Computation only.

Figure 6: Speedup for small test suite.

12

L
!.

E
o 30

(J

_ 2o
"0
®
ID

nx: 128; ny: 41; nz: variable

i i i/
60 ;.......... _.......... _.................. _...

E i : !
' / i

E 50i.........._..........i........;4.........._---
0

o /
/

+ 40 icieai_
: /

............................_._............._..2_..._

.................

....._"i"

20 40 60

Number of Processors

(a) Complete c_culation.

6O

--_ 5O
t-
O

6. 4O
E
0

_J
_-- 30

n

_ 2o
®

10

nx: 128; ny: 41; nz: variable

.........i..........i.........._........._.........._......._."
i i _ __........._..........i..........i..........i......... i: -
i i i i_'!

i i i/.! i i

........................321..........i.........i:

I I I I

20 40

Number of Processors

(b) Computation only.

6o

Figure 7: Speedup for medium test suite.

nx: 256; ny: 41; nz: variable

60 ;.......... ..,.................... _....... /.:
: ! / i

• ' / i
oE 50 i i.......... _........ ;_ _....

rj : /

+ 40 ideai_i...............

E !/ :
o 30i..........!......._!..........i-..........:....

2o.........i.........j.<...."i_°_-"
"0 /: / " :

® I i _32 i®
o_ !/ : i !

I: I

20 40 60

Number of Processors

(a) Complete calculation.

nx: 256; ny: 41; nz: variable

60 ..._......._

• /.
50 ideai/

6. 40 -........_..........;..........;.:.....7;........._.........i....
E i /:: _0

30 i"i i......... i.... :321.......... i':......... i:
n

_ 20
®

_ ! i6 i i i i
10

20 40 60

Number of Processors

(b) Computation only.

Figure 8: Speedup for large test suite.

13

0

El

r_

E
0

(J

10C_

80

60

4o

20

nx: 64; ny: 41; nz: 64
,-_O: 0 :0 i

i : :

" i..........i.......oic_mh.............
/i i i _iCom_.i
.....i.................. _...... oi_tdf_at]

i i _i Tridiag ::

:: ! x! PenlOdiagi
......."'" ! i.......... !,".......... :---

:A : '

20 40 60

Number of Processors

(a) Cost breakdown.

100

E
E 80
0

(9

i..

o 60
N--

p.-

_ 4o

I---

o

= 20
I,--

nx: 64; ny: 41 nz: 64

0 Coml_ i

[] Comm i

.....Z_TFF'r -! ! !....... i

o i Maf-iMaf

.....*...i..T.ridi.ag.................i.........

]

20 40 60

Number of Processors

(b) Speedup.

Figure 9: Cost breakdown and speedup for small test case with 64 spanwise grid points.

nx: 128; ny: 41; nz = 64
100_0- 0 . .0 • . •,

/ 2 j
8oi..... _ : _ i.........L.ol--

. I. i ol Mof4Mot
"_ 40'0.

E
0

20

.._....: i i _i Tridi'og

...

':...............i:......i......
20 40 60

Number of Processors

(a) Cost breakdown.

1O0

E
E 80
0

o 60
N--

I-

_ 4o

I--

D

= 20
m

F-

nx: 128; ny: 41; nz: 64

• i i
OiComp i i

[] !Com_n i i

0 i Maf-iMaf i !

20 40 60

Number of Processors

(b) speedup.

Figure 10: Cost breakdown and speedup for medium test case with 64 spanwise grid points.

14

: ' • _ '-: : • ' : .::::, :' i_i:, .!:::: : :':.,!::_:•i'i:.:¸

nx: 256; ny: 41; nz: 64

8o.........i....... L. _ ii..........i...

_1 _. .:_ Comin i

..... ! ! _i Tridiag !
o_ 4oi..........i..........i..........i"i....

20
l

_,o ,as* ,o ,

0 _- Ix I i -
20 40 60

Number of Processors

nx: 256; ny: 41; nz: 64
) 100 :

0 Comp i i

"'E [] Com_ i
oE80.....! i..........

<>!Maf-iMaf i ! / i
o 60_..i.:Tr.Ldi.o.g.......i

i--

40-

I--

_o
20

p-.

0 -
20 40 60

Number of Processors

(a) Cost breakdown. (b) speedup.

Figure 11: Cost breakdown and speedup for large test case with 64 spanwise grid points.

nx: 64; ny: 41" nz: varioble
140 10 °

120
Q)

_ 100

E 80
3

> 60

o 40
O9
0,1

:_ 20

0

nz = 128

i

/

-_- nz = 64

nz = 32

(/)

"_>-i0_.i

N

g lo-2
a

2_

10-3

nx: 64; ny: 41; nz: variable

I I I I I

5 10 15 20 25 30 0

Number of Processors

(a) Message volume. (b) Message size.

Figure 12: Message volume and size for one time step of small test suite.

/a,

%*,,
_-k'", 0 nz: 32

_ Anz: 64
_'"-. • nz: 128

\ "_-..

I I I I I I _

10 20 30

Number of Processors

15

8.5
nx: 64; ny: 41" nz: variable

_8.0

0

o 7.,.5
EL.

o_ 7.0

_ 6.5

x_ 6.0

5.5

/z 32

--_//,"'" A nz: 64

/ • -x(-nz: 128

IIIII I I Iit1111 I I IIIIIII I I Illltl

10-3 10-2 10-1

Message Size, Mbytes

00

Figure 13: Communication bandwidth per processor as function of message size.

5

_4
-O
E

O

_3

d
E2

°_

nx: variable; ny: 41; nz: 32

6 Processors

0 Comp / /
[] Comm /

FFT /
o Mat-Mat /

/* Tridiag
x Pentadiag /

/-'damp + comm

////_

O_ ! I '_ i J i I { I ':

80 120 160 200 240

n x

(a) Computational costs.

5.0

4.5

4.0

3.5
II

t_=_3.0

_ 2.5

2.0

1.5

1 .C;

nx: variable; ny: 41; nz: 32

16 Processors

0 Camp .j

[] Comm

rrT ///'/"
0 Mat-Mat ///,I

* Tridiag. //'-/

I I I

80 120 160 200 240

I"1x

(b) Slowdown.

Figure 14: Performance of PSDNS code with varying streamwise dimension.

16

I
I

i
I

iz

L
k

1
i

i

3.0
nx: 64; ny: variable; nz: .32

(/)-o 2.0
C
0
o

1.5
d

•-- 1.0
F-

/16 Processors /
/

2.5 /

camp +//carom
/

i////_

0.5 _

0.0 _ : : : :_ ! ', • _ '._
40 50 60 70 80

ny

(a) Computational Costs

4.0
nx: 64; ny: variable; nz: 32

3.5

3.0

tl

__=_2.5

2.0

1.5

1.0
40

16 Processors . /_

0 Camp / /

[] Carom

z_ FFT

0 Mat-Mat / E)
Tridiag / /

x Pentadia V

f/_"""_ I I I I I I I

50 60 70 80

ny

(h) Slowdown

Figure 15: Performance of PSDNS code with varying wall normal dimension.

4.5

4.0

3.5

-o 5.0
C
0

2.5
u)

2.0
1.5

1.0

0.5

0.0

nx: 64; ny: 41; nz: variable

1 6 Processors /
/

/
/

/
/

/
/

/ camp + comm/

- ' ,_ •r. " I I I ..

40 80 120

n z

(a) Computational Costs

.nx: 64; ny: 41; nz: variable

4"0I 16 Pr°cess°rs

"_ _L 0 Comp ///
_'_I []Comrn ////

/ _ FFT //// £

3.0}- o Mat-Mat ///_///-
| * Tridiag /////

;=L,2.5L x Pentadiag .J.._/_" J

"///2.0

,.st
1 O= v' I I I i

40 80 120

n z

(b) Slowdown

Figure 16: Performance of PSDNS code with varying spanwise dimension.

17

/ ,i' :/ i ¸¸, . / • . ,

nx: 256; ny: 41; nz: variable

-,_ 102

3
q)

"5

•° nz: 128

.__ 101 "--
U') I_

0 20 40 60

Number of Processors

Figure 17: Memory size of executable codes in large test suite.

6O

5O

P_
-o 40

C

O

30

d

._E2o
F.-

10

nx: 896; ny: 61; nz: 32

Cray Y//MP O Comp (,)
[] Comm

\
A FFT

\ SP 1
o Mat-Mat

k
\ • Tridiag

\ x Penfadiag

,C-90 "_'_

0 , __ , i ,

0 10 20 30

Number of Processors

Figure 18: Computational costs for large simulation: IBM SP1 versus Cray Y/MP and Cray C-90.

18

i

i:

!

_U

i

REPORT DOCUMENTATION PAGE I FormApproved

I OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintainin_ the data needed, and comp et ng and reviewing the co ect on of information. Send comments reJzarding th s burden estimate or any other aspect of this

collection of information, including suggestions for reduci'ng this burden, to Wash ngton Headquarters Services, Directorate _or Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Ofl]ce of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

'1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 1994 Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Scalability Study of Parallel Spatial Direct Numerical Simulation
Code on IBM SP1 Parallel Supercomputer

6. AUTHOR(S)

Hanebutte, Ulf R., Ronald D. Joslin, and Mohammad Zubair

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science
and Engineering
Marl Stop 132C, NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-0001

II. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card
Final Report

To be submitted to the Journal of Scientific Computing

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

C NAS1-19480
WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 94-80

lO. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-194975
ICASE Report No. 94-80

12b. DISTRIBUTION CODE

Subject Category 60,61

13. ABSTRACT (Maximum 200 words)

The implementation and the performance of a parallel spatial direct numerical simulation (PSDNS) code are reported
for the IBM SP1 supercomputer. The spatially evolving disturbances that are associated with laminar-to-turbulent
in three-dimensional boundary-layer flows are computed with the PS-DNS code. By remapping the distributed data
structure during the course of the calculation, optimized serial library routines can be utilized that substantially
increase the computational performance. Although the remapping incurs a high communication penalty, the parallel
efficiency of the code remains above 40 percent for all performed calculations. By using appropriate compile options
and optimized library routines, the serial code achieves 52-56 Mflops on a single node of the SP1 (45 percent of
theoretical peak performance). The actual performance of the PSDNS code on the SP1 is evaluated with a "real
world" simulation that consists of 1.7 million grid points. One time step of this simulation is calculated on eight
nodes of the SP1 in the same time as required by a Cray Y/MP for the same simulation. The scalability information
provides estimated computational costs that match the actual costs relative to changes in the number of grid points.

14. SUBJECT TERMS

spatial direct numerical simulation, parallel computing, three-dimensional boundary-
layer flow

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

JSN 7540-01-280-5500

18. SECURITY CLASSIFICATIO_ 19. SECURITY CLASSIFICATION
OF THIS PAGE OF ABSTRACT

Unclassified
i

_U.S. GOVERNMENT PRINTING OFFICE: 1994 - 628-064/23061

15. NUMBER OF PAGES

20
16. PRICE CODE

A03
20. LIMITATION

OF ABSTRACT

s
tandard Form 298(Rev. 2-89)

Prescribed by ANSI Std. Z39-18

298-102

